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o A little bit of science
e Machine learning and high energy “jets”

e Applications of ML4Jets
4+ CNN’s for “pileup” noise ;%%
4+ GANSs for simulation '4(_

+ Weak supervision and learning from data




Goal: We want to study the structure of the
smallest building blocks of matter. For this, we
need the most powertul microscope ever built!
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20 mile beam
line and a 5
story detector

access to a
new frontier!
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High Energy Physics at the LHC
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Jets with Machine Learning

classification, regression, generation, ...
...this is a very active field of research!
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# papers jets + DNN


https://indico.physics.lbl.gov/indico/event/546/
https://indico.cern.ch/event/745718/

Organizing approaches: how do you think of jets?
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https://arxiv.org/pdf/1702.00748.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf
https://arxiv.org/abs/1407.5675

Organizing approaches: how do you think of jets?
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Solving challenges for jets with ML
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Neural-network Machine learning may help us achieve

based simulation / ~
generation greater precision, become more
model independent, & learn about

image Mass [GeV/c?] o emergent features of the strong force!
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Solution 1: Noise (“pileup”)

pp collisions at the LHC
don’t happen one at a time!

the extra collisions are called pileup
and add soft radiation on top of our jets
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o ! ,, e this is akin to image

NV~ de-noising - we can
, use ML for that!




Solution 1: Noise (“pileup”)

Leading vertex charged

—
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Total neutral because We Can

J measure ~2/3 of it
(charged pileup)

...also a natural
' application of
- convolutional NNs!

Leading vertex neutral

10 filters x2




Solution 1: Noise (“pileup”)
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P. Komiske, E. Metodiev, BPN, and M. Schwartz, JHEP 12 (2017) 051



https://arxiv.org/abs/1707.08600

Solution 2: Accelerating simulation

Training NN's Is slow,
but evaluation Is fast

Physics-based
simulations of
jets are slow

What if we can learn to
simulate jets with a NN?




M. Paganini, L. de Oliveira, and BPN, PRL 120 (2018) 042003

Solution 2: Accelerating simulation

One image One network per particle type;
per calo layer input particle energy
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https://arxiv.org/abs/1705.02355

M. Paganini, L. de Oliveira, and BPN, PRL 120 (2018) 042003

Solution 2: Accelerating simulation
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001/
https://arxiv.org/abs/1705.02355

Solution 3: Learning directly from data

For supervised learning, we depend on labels
labels usually come from simulation
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What if data and simulation are very different?
...your classifier will be sub-optimal



Solution 3: Learning directly from data

Boosted Higgs boson jets

PYTHIA (VINCIA) - PYTHIA
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DNN classifiers
can exploit
subtle features

subtle features are
hard to model !

we need to be
careful about which
models we use -
only data is correct


https://arxiv.org/abs/1611.01046

Two methods

Property LLP CWolLa
Compatible with any trainable model| v v
No training modifications needed X v
Training does not need fractions X v
Smooth limit to full supervision X v
Works for > 2 mixed samples v 7

Learning Classification
from Label without
Proportions Labels

L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145
E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 51



https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1702.00414

Application to jet image classification

2 05 Both methods work
5 well; a promising new
E . direction with many
- "1 Loss and activation ", Y otential applications!
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% 029 === LLP: WCE Loss + ReLU ‘\ applylng thlS N the
= ——- LLP: SS Loss + ReLU A context of anomaly
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P. Komiske, E. Metodiev, BPN, M. Schwartz: Phys. Rev. D 98, 011502(R)



https://arxiv.org/abs/1801.10158
https://arxiv.org/abs/1805.02664

Conclusions and Outlook
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(Jet) image-based NN classification, J
regression, and generation are e
powerful tools for fully exploiting the | | w |1

physics program at the LHC

This is only a taste - MLAHEP
is a very active field...

...that may hopefully help us
understand something new and
fundamental about nature!







